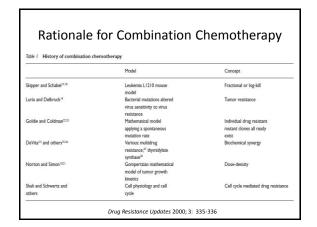
Chemotherapy Drug Sequencing

Adam Peele, PharmD, BCPS, BCOP Oncology Pharmacy Manager Cone Health

Objectives

- Discuss rationale for chemotherapy sequencing
- Describe adverse events with improper sequencing
- Evaluate common regimens and discuss sequencing


Background

- First attempt at systemic treatment of cancer was in 1943
- Expansion of understanding of cancer has led to development of chemotherapeutic agents
- · Chemotherapeutic agents differ in
 - Mechanisms of action
 - Toxicity
 - Activity

Background

- Individual agents have not increased cure rates in majority of malignancies
- Concept of combination chemotherapy to treat metastatic disease was breakthrough
- Chemotherapy sequencing increasingly apparent in treatment

Cell Cycle Synthesis degradation Godin Godin Cock Godin Cock Cock

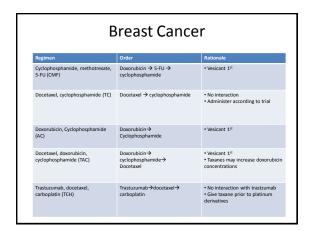
Biochemical Synergy

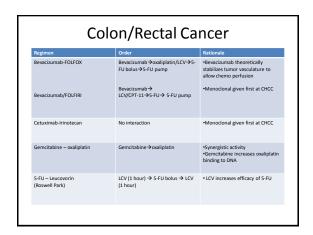
- Synergy
 - Greater than expected additive effect of individual drugs when combined
 - Multiple sites in pathways can be attacked
 - Multiple cellular maintenance and function of essential repair mechanisms are altered
- Antagonism
 - Less than expected additive effect of individual drugs when combined

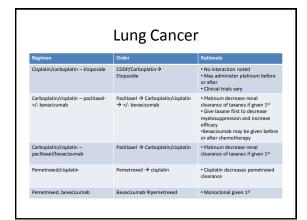
Misconceptions

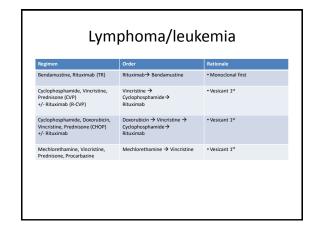
- Common misconception is agents have been tested as part of a chemotherapy regimen
- Several agents are metabolized via the CYP450 system
 - Doxorubicin
 - Docetaxel
 - Paclitaxel
- Many agents have cell cycle-specific mechanisms of action
- Drug information extrapolated from published single agent data to all in agents in same class

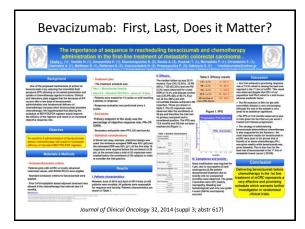
Cone Health Cancer Center Clinical Pearls


- Administer vesicants → irritant → nonvesicants
- Vesicants are irritating and could increase the risk of vein fragility if given last
- · Monoclonal antibodies typically administered first
- · If no specifics, administer according to clinical trial


Pay Your Taxes First


- Taxanes act by stabilizing microtubules
 - Causing a G2/M cell cycle arrest followed by apoptosis
- Taxanes should be administered prior to platinums
 - 33% reduction in paclitaxel clearance when cisplatin given prior to paclitaxel
 - No increase in efficacy
 - Increased myelosuppression
- Carboplatin and paclitaxel have failed to demonstrate similar pharmacokinetic results


Regimens Lacking Clinical Data Maximum synergistic activity; less Gemcitabine Docetaxel Synergistic effect (antagonistic in In vitro only opposite) Significant myelosuppression with this combination, but not related to sequence Irinotecan Docetaxel Paclitaxel Less kinetic interactions; less Trend pharmacokinetic changes, no Irinotecan clinical relevance evaluated; sequence had no effect Maximum synergistic activity; less In vitro only; murine only toxicity 5-FU Cisplatin


Sequence		h Clinical Data Sequence Benefit
Gemcitabine	Cisplatin	Increases platinum-DNA binding and lessens neutropenia Less toxicity
Gemcitabine	Oxaliplatin	Increases platinum-DNA binding and lessens neutropenia Less toxic
Leucovorin	5-FU	Stabilizes thymidylate synthase to increase 5-FU cytotoxicity and efficacy
Liposomal doxorubicin	Vinorelbine	Decreased neutropenia Avoidance of increased AUC of vinorelbine
Pemetrexed	Gemcitabine	Increased efficacy
Topotecan	Carboplatin	Less risk of neutropenia and thrombocytopenia

Chemotherapy Drug Sequencing

Adam Peele, PharmD, BCPS, BCOP
Oncology Pharmacy Manager
Cone Health